Observation of quantized vortex in atomic Bose-Einstein condensate at Dirac point

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

When two or more energy bands become degenerate at a singular point in the momentum space, such singularity, or ``Dirac points", gives rise to intriguing quantum phenomena as well as unusual material properties. Systems at the Dirac points can possess topological charges and their unique properties can be probed by various methods, such as transport measurement, interferometry and momentum spectroscopy. While the topology of Dirac point in the momentum space is well studied theoretically, observation of topological defects in a many-body quantum systems at Dirac point remain an elusive goal. Based on atomic Bose-Einstein condensate in a graphene-like optical honeycomb lattice, we directly observe emergence of quantized vortices at the Dirac point. The phase diagram of lattice bosons at the Dirac point is revealed. Our work provides a new way of generating vortices in a quantum gas, and the method is generic and can be applied to different types of optical lattices with topological singularity, especially topological flat band near Dirac point for twisted bilayer optical lattices.

Article activity feed