Self-Supervised Model-Informed Deep Learning for Low-SNR SS-OCT Domain Transformation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This article introduces a novel deep-learning based framework, Super-resolution/Denosing network (SDNet), for simultaneous denoising and super-resolution of swept-source optical coherence tomography (SS-OCT) images. The novelty of this work lies in the hybrid integration of data-driven deep-learning with a model-informed noise representation, specifically designed to address the very low signal-to-noise ratio (SNR) and low-resolution challenges in SS-OCT imaging. SDNet introduces a two-step training process, leveraging noise-free OCT references to simulate low-SNR conditions. In the first step, the network learns to enhance noisy images by combining denoising and super-resolution within noise-corrupted reference domain. To refine its performance, the second step incorporates Principle Component Analysis (PCA) as self-supervised denoising strategy, eliminating the need for ground-truth noisy image data. This unique approach enhances SDNet’s adaptability and clinical relevance. A key advantage of SDNet is its ability to balance contrast-texture by adjusting the weights of the two training steps, offering clinicians flexibility for specific dagnostic needs. Experimental results across diverse datasets demonstrate that SDNet surpasses traditional model-based and data-driven methods in computational efficiency, noise reduction, and structural fidelity. The framework excels in improving both image quality and diagnostic accuracy. Additionally, SDNet shows promising adaptability for analyzing low-resolution, low-SNR OCT images, such as those from patients with diabetic macular edema (DME). This study establishes SDNet as a robust, efficient, and clinically adaptable solution for OCT image enhancement addressing critical limitations in contemporary imaging workflows.

Article activity feed