A Multi-Scale Spatial Attention-Based Zero-Shot Learning Framework for Low-Light Image Enhancement

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Low-light image enhancement remains a challenging task, particularly in the absence of paired training data. In this study, we present LucentVisionNet, a novel zero-shot learning framework that addresses the limitations of traditional and deep learning-based enhancement methods. The proposed approach integrates multi-scale spatial attention with a deep curve estimation network, enabling fine-grained enhancement while preserving semantic and perceptual fidelity. To further improve generalization, we adopt a recurrent enhancement strategy and optimize the model using a composite loss function comprising six tailored components, including a novel no-reference image quality loss inspired by human visual perception. Extensive experiments on both paired and unpaired benchmark datasets demonstrate that LucentVisionNet consistently outperforms state-of-the-art supervised, unsupervised, and zero-shot methods across multiple full-reference and no-reference image quality metrics. Our framework achieves high visual quality, structural consistency, and computational efficiency, making it well-suited for deployment in real-world applications such as mobile photography, surveillance, and autonomous navigation.

Article activity feed