A fast convolution-based method for peridynamic models in plasticity and ductile fracture

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We introduce the fast convolution-based method (FCBM) for a peridynamic correspondence (cPD) model to simulate finite plastic deformations and ductile fracture in 3D. The cPD model allows the direct use of classical finite plasticity constitutive ductile failure models, like the Johnson-Cook (J-C) model used here. We validate the FCBM for the cPD model against experimental results from the literature on ductile failure in Al2021-351 alloy samples of various geometries. Notably, calibration of elastic and hardening material parameters is made only using the experimental data from the simplest geometry, a smooth round bar, and only up to the necking point. We then use that calibrated model beyond necking, through full failure, and for all the different sample geometries. The performance (speedup and memory allocation) of the new method is compared versus the meshfree method normally used to discretize PD models for fracture and damage. The proposed method leads to efficient large-scale peridynamic simulations of finite plastic deformations and ductile failure that are closer to experimental measurements in terms of displacement and plastic strain at failure than previous FEM-based solutions from the literature.

Article activity feed