Prognostic significance of NUAK1 and its association with immune infiltration in stomach adenocarcinoma
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
BACKGROUND: Stomach adenocarcinoma (STAD) represents a significant global health burden, accounting for a considerable proportion of cancer-related mortalities, and NUAK1 , a protein kinase, plays a crucial role in cellular metabolism, cell cycle regulation, migration, and tumor progression. However, its relationship with prognosis and immune infiltration in STAD has not been thoroughly investigated. METHODS: RNA sequencing data from the Cancer Genome Atlas (TCGA) and Genotypic Tissue Expression Project (GTEx) databases were employed to assess disparities in NUAK1 expression between STAD tumour and normal tissues. Additionally, we investigated the correlation between NUAK1 expression and patient prognosis, in addition to the level of immune cell infiltration. The potential functions were elucidated through an examination of the Gene Ontology (GO) Encyclopedia, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and an enrichment analysis (GSEA). RESULTS: Our analysis demonstrated that NUAK1 expression in tumour tissues exhibited a notable disparity from that observed in normal tissues, with elevated levels detected in STAD tissues. An elevated NUAK1 expression level was found to correlate with a poorer overall survival (OS), disease-specific survival (DSS), and progression-free intervals (PFI). Additionally, immune infiltration analysis indicated a significant positive correlation between NUAK1 expression and various tumor-infiltrating immune cells, while a negative correlation was observed with T helper cell 17(Th17) cells. Furthermore, enrichment analysis was conducted to identify relevant biological features and pathways. CONCLUSION: The expression levels of NUAK1 are significantly increased in STAD, and this heightened expression correlates with diminished OS, DSS, and PFI among affected patients. These observations indicate that NUAK1 has the potential to function as a prognostic biomarker for STAD and may represent a viable therapeutic target for intervention in its management.