Unveiling the cut-and-repair cycle of designer nucleases in human stem and T cells via CLEAR-time dPCR

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

DNA repair mechanisms in human primary cells, including error-free repair, and, recurrent nuclease cleavage events, remain largely uncharacterised. We elucidate gene-editing related repair processes using Cleavage and Lesion Evaluation via Absolute Real-time dPCR (CLEAR-time dPCR), an ensemble of multiplexed dPCR assays that quantifies genome integrity at targeted sites. Utilising CLEAR-time dPCR we track active DSBs, small indels, large deletions, and other aberrations in absolute terms in clinically relevant edited cells, including HSPCs, iPSCs, and T-cells. By quantifying up to 90% of loci with unresolved DSBs, CLEAR-time dPCR reveals biases inherent to conventional mutation screening assays. Furthermore, we accurately quantify DNA repair precision, revealing prevalent scarless repair after blunt and staggered end DSBs and recurrent nucleases cleavage. This work provides one of the most precise analyses of DNA repair and mutation dynamics, paving the way for mechanistic studies to advance gene therapy, designer editors, and small molecule discovery.

Article activity feed