UFMylation orchestrates chromatin engagement of core NHEJ components to promote DNA double-strand break repair
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions whose misrepair can lead to genomic instability, cancer and developmental disorders. Through systematic screening of understudied ubiquitin-like modifiers (UBLs), we identify UFM1 as a previously unrecognised regulator of non-homologous end-joining (NHEJ). Using a structure-guided chemical biology strategy, we develop a photo-crosslinkable UFM1 probe and, together with high-resolution NMR, uncover non-canonical UFM1-binding regions in core NHEJ components, including XRCC4. Mechanistically, proximity-dependent proteomics reveals Ku70 as a key UFMylation substrate, establishing a functional axis in which XRCC4 engages UFMylated Ku70 to promote the chromatin assembly of NHEJ factors. Perturbation of UFM1 signalling, via UFSP2 depletion or a hypomorphic UBA5 allele in patient-derived fibroblasts, impairs these processes, linking UFMylation defects to altered regulation of DSB repair. Our findings define a complete UFM1 signalling module in genome maintenance and uncover a molecular connection between hereditary UFMylation disorders and dysregulated DSB repair pathways.