T-cell immunity induced by a nonadjuvanted HLA-restricted peptide COVID-19 vaccine

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

During COVID-19 pandemic, cases of postvaccination infections and restored SARS-CoV-2 virus have increased after full vaccination, which might be contributed to by immune surveillance escape or virus rebound. Here, artificial linear 9-mer human leucocyte antigen (HLA)-restricted UC peptides were designed based on the well-conserved S2 region of the SARS-CoV-2 spike protein regardless of rapid mutation and glycosylation hindrance. Through HLA molecule presentation, UC peptides can activate cytotoxic T lymphocytes (CTLs), which elicit cytotoxic activity by recognizing SARS-CoV-2 spike-bearing cells and preferably secreting Th1 cytokines. The UC peptides showed immunogenicity and generated a specific antibody in mice by both intramuscular injection and oral delivery without adjuvant formulation. In conclusion, a T-cell vaccine could provide long-lasting protection against SARS-CoV-2 either during reinfection or during SARS-CoV-2 rebound. Due to its ability to eradicate SARS-CoV-2 virus-infected cells, a COVID-19 T-cell vaccine might provide a solution to lower COVID-19 severity and long COVID-19.

Article activity feed