Development of an Oncolytic Influenza A Virus Vector Expressing Human CXCL10 for Enhanced T-Cell Responses

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Influenza A virus (IAV) vectors with truncated NS1 proteins combine strong innate adjuvanticity with genetic flexibility and are attractive platforms for immune modulation. We engineered an NS1-truncated A/Puerto Rico/8/34 (H1N1) virus, PR8/NS124_SS_CXCL10, to express human CXCL10 from the NS segment and compared its biological and immunological properties with the parental NS124 vector in mice. The CXCL10-expressing virus replicated efficiently in embryonated chicken eggs and MDCK cells and secreted high levels of CXCL10, but showed profoundly reduced replication in mouse lungs and peritoneal cavity, indicating a strongly attenuated in vivo phenotype. After intraperitoneal immunization, both vectors induced rapid local cytokine and innate-cell recruitment, although early inflammatory responses and viral RNA loads were lower with PR8/NS124_SS_CXCL10 than with NS124. Despite this attenuation, PR8/NS124_SS_CXCL10 elicited significantly higher frequencies of systemic antigen-specific CD8⁺ and CD4⁺ effector-memory T cells producing IFN-γ, TNF-α, and IL-2, and promoted robust recall CD8⁺ and CD4⁺ T-cell responses in the lungs following low-dose homologous challenge. In a stringent heterologous challenge model with A/Aichi/2/68 (H3N2), however, mice primed intranasally with the CXCL10 vector experienced greater weight loss than NS124-primed animals, consistent with enhanced T-cell–driven immunopathology in the context of insufficient early viral control. These data show that CXCL10 expression in an NS1-attenuated IAV backbone simultaneously enforces replication restriction and amplifies T-cell immunogenicity, supporting its potential as a chemokine-armed platform for immune modulation and oncolytic virotherapy while underscoring the need to carefully balance mucosal priming and recall in chemokine-expressing influenza vaccines.

Article activity feed