A Novel FEC Implementation for VSAT Terminals Using High-Level Synthesis

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper presents a hardware-aware field-programmable gate array (FPGA) implementation of a layered 2-dimensional corrected normalized min-sum (2D-CNMS) decoder for quasi-cyclic low-density parity-check (QC-LDPC) codes in very small aperture terminal (VSAT) satellite communication systems. The main focus of this work is leveraging Xilinx Vitis high-level synthesis (HLS) to design and generate an LDPC decoder IP core based on the proposed algorithm, enabling rapid development and portability across FPGA platforms. Unlike conventional NMS and 2D-NMS algorithms, the proposed architecture introduces dyadic, multiplier-free normalization combined with two-level magnitude correction, achieving near-belief propagation (BP) performance with reduced complexity and latency. Implemented entirely in HLS and integrated in Vivado, the design achieves real-time operation on Zynq UltraScale+ multiprocessor system-on-chip (MPSoC) with throughput of 116-164 Mbps at 400 MHz and resource utilization of 8.7K-22.9K LUTs, 2.6K-7.5K FFs, and zero DSP blocks. Bit-error-rate (BER) results show no error floor down to 10−8 across additive white gaussian noise (AWGN) channel model. Fixed scaling factors are optimized to minimize latency and hardware overhead while preserving decoding accuracy. These results demonstrate that the proposed HLS-based 2D-CNMS IP core offers a resource-efficient, high-performance solution for multi-frequency time division multiple access (MF-TDMA) satellite links.

Article activity feed