A Novel FEC Implementation for VSAT Terminals Using High-Level Synthesis
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This paper presents a hardware-aware field-programmable gate array (FPGA) implementation of a layered 2-dimensional corrected normalized min-sum (2D-CNMS) decoder for quasi-cyclic low-density parity-check (QC-LDPC) codes in very small aperture terminal (VSAT) satellite communication systems. The main focus of this work is leveraging Xilinx Vitis high-level synthesis (HLS) to design and generate an LDPC decoder IP core based on the proposed algorithm, enabling rapid development and portability across FPGA platforms. Unlike conventional NMS and 2D-NMS algorithms, the proposed architecture introduces dyadic, multiplier-free normalization combined with two-level magnitude correction, achieving near-belief propagation (BP) performance with reduced complexity and latency. Implemented entirely in HLS and integrated in Vivado, the design achieves real-time operation on Zynq UltraScale+ multiprocessor system-on-chip (MPSoC) with throughput of 116-164 Mbps at 400 MHz and resource utilization of 8.7K-22.9K LUTs, 2.6K-7.5K FFs, and zero DSP blocks. Bit-error-rate (BER) results show no error floor down to 10−8 across additive white gaussian noise (AWGN) channel model. Fixed scaling factors are optimized to minimize latency and hardware overhead while preserving decoding accuracy. These results demonstrate that the proposed HLS-based 2D-CNMS IP core offers a resource-efficient, high-performance solution for multi-frequency time division multiple access (MF-TDMA) satellite links.