Space as a Physical Medium Underlying Reality: A Mechanistic Derivation of Special and General Relativity

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The Michelson–Morley experiment yielded a null result, indicating equal light travel times in the longitudinal and transverse arms of an interferometer, traditionally interpreted as evidence against a light-propagating medium. This paper re-examines this conclusion by postulating that space itself possesses elastic properties and constitutes the fundamental medium. Beginning with this premise and modeling matter as standing waves within this space-medium, we first demonstrate that the complete mathematical framework of Special Relativity—including Lorentz transformations, time dilation, and mass-energy equivalence—emerges naturally from the Doppler deformation of these wave patterns under motion. We then extend this wave-mechanical approach to gravity, showing that the Newtonian potential and inverse-square law can be interpreted as the gradient of a spatial deformation field, with gravitational interaction energy arising from the overlap of these deformations. We show that Special and General Relativity emerge as effective geometric descriptions of an underlying elastic dynamics of space, in which relativistic effects correspond to physical deformations of wave-based matter. This framework preserves all empirical predictions of relativity while providing a unified mechanical interpretation of inertia, gravitation, Equivalence Principle, and spacetime curvature.

Article activity feed