Smart Modular Vertical Farms: Addressing Food Security and Resource Efficiency in Singapore’s Urban Environment

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study presents an outdoor modular, vertical farming system integrated into building façades to address urban food security and sustainability challenges in Singapore. The design integrates passive climate control, hydroponic and soil-based irrigation; active monitoring of vapor pressure deficit (VPD) and photosynthetically active radiation (PAR). Continuous visual imaging is used to support growth monitoring and predictive harvesting, reducing labor needs. Under experimental conditions, deployment of UCNP-coated light-conversion films improved crop yield by 30% and reduced plant heat stress. Photovoltaic arrays and battery storage enabled energy self-sufficiency and microclimate management in the modular farm. The results demonstrated that building-integrated vertical farms can enhance urban food resilience and resource efficiency, offering a scalable model for sustainable agriculture in land-constrained cities.

Article activity feed