Real-Time Motion Planning and High-Precision Control Method for Six-Axis Industrial Robotic Arms Based on Multi-Source Error Compensation
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
To meet the demands of high-speed, high-precision execution of six-axis industrial robotic arms in complex manufacturing environments, this paper presents a real-time motion planning method incorporating multi-source error compensation based on production data and dynamic models. A self-developed control platform (EtherCAT bus, 0.25 ms cycle, <20 μs jitter) enables rapid command issuance and execution. The method first generates an initial trajectory using a calibrated model, then applies online corrections via a multi-source error estimation model to mitigate deviations from flexible structures, load changes, and installation offsets. A lightweight computation module ensures accuracy without increasing computational overhead. In 600 load variation experiments, trajectory error decreased from 0.41 mm to 0.24 mm (41.5% improvement), and path smoothness improved by 28.2%. Under typical assembly tasks, the success rate increased from 89.3% to 95.7%. Results confirm the method's effectiveness in real-time trajectory optimization and its strong engineering applicability across varied scenarios.