New Differential Flatness-Based Trajectory Tracking Method and Its Application to a Wheeled Mobile Robot Control
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This article investigates the trajectory-tracking control of a differential-drive two-wheeled mobile robot (DDWMR) using its kinematic model. A nonlinear-to-linear transformation based on differential flatness is employed to convert the original nonlinear system into two fully decoupled linear subsystems, enabling a simple and robust controller design. Unlike conventional flatness-based methods that rely on exact feedforward linearization around a reference trajectory, the proposed approach performs plant linearization, ensuring reliable tracking across a wide range of trajectories. The resulting two-loop architecture consists of an inner nonlinear loop implementing state prolongation and static feedback, and an outer linear controller performing trajectory tracking of the linearized system. Simulation results on a circular reference trajectory demonstrate high tracking accuracy, with a maximum transient deviation of 0.28 m, a settling time of approximately 120 s, and a steady-state mean tracking error below 0.01 m. These results confirm that the plant-linearization-based framework provides superior accuracy, robustness, and practical applicability for DDWMR trajectory tracking.