Assessing Meteorological (1950–2022) and Hydrological (1911–2022) Trends in the Northwestern Alps: Insights from the Upper Po River Basin

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study investigates transboundary hydro-meteorological trends in the Upper Po River basin, adopting a multi-perspective framework to disentangle the joint evolution of climatic and hydrological drivers. We analyzed climatic variables from 25 weather stations (1950–2022) alongside streamflow data from 14 river sections (1911–2022). Trends were assessed using the Mann–Kendall test to detect monotonic changes and the Theil-Sen estimator to quantify magnitude, ensuring robustness against outliers. The results reveal pronounced warming, particularly in spring maximum temperatures with +0.95 ± 0.40 °C per decade, and +0.62 ± 0.35 °C per decade at the annual scale. Conversely, average and minimum daily temperatures show lower rates with, respectively, +0.50 ± 0.26 °C and +0.39 ± 0.27 °C at the annual scale. Consequently, potential evapotranspiration increased significantly (+15.1 ± 9.4 mm per decade), likely contributing to a marked decline in summer streamflow in 8 out of 14 sections. Correlation analysis confirms that snow dynamics modulate the hydrological response: precipitation drives discharge annually and in autumn, winter exhibits a weaker coupling, as winter precipitation is partially stored in the basin as snow, contributing to discharge during spring and summer. By focusing on this strategic region for European agriculture and industry, the study provides useful insights into the combined effects of warming and evapotranspiration on water availability for adaptation strategies.

Article activity feed