Reassessing Plasmonic Interlayers: The Detrimental Role of Au Nanofilms in P3HT: PCBM Organic Solar Cells

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study examines the impact of incorporating a thin gold (Au) nanofilm as an interfacial buffer layer between the anode and the active layer in poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C₆₁-butyric acid methyl ester (P3HT:PCBM) organic solar cells. A nominal 6 nm Au layer was thermally evaporated onto indium tin oxide (ITO) substrates and subsequently annealed at 550 °C for 30 and 60 minutes before completing the device fabrication. The optical, morphological, and electrical consequences of introducing these annealed Au films were systematically evaluated. Optical measurements revealed a marked enhancement in light absorption: the unannealed Au/P3HT:PCBM film showed a 54% increase at 560 nm, rising to 79% after 60 minutes of annealing, attributed to localized surface plasmon resonance. In contrast, electrical characterization indicated a decline in overall photovoltaic performance, with all parameters decreasing except for a modest 2% increase in fill factor. Atomic force microscopy further revealed that the actual Au nanofilm thickness was approximately 16 nm—significantly higher than the nominal 6 nm—leading to increased roughness and aggregation. The excessive thickness and roughened morphology of the annealed Au film likely hindered charge transport and reduced exciton generation by scattering and reflecting incident light away from the active layer. These findings highlight the competing effects of Au nanofilms: while they enhance optical absorption, they simultaneously degrade electrical performance. This underscores the importance of carefully optimizing nanofilm thickness and morphology to achieve a balanced interplay between plasmonic enhancement and electronic transport in organic solar cells.

Article activity feed