Porous Micropillar Arrays with Oil Infusion: Fabrication, Characterisation, and Wettability Analysis
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Superhydrophobic micropillar surfaces, inspired by the lotus leaf, have been extensively studied over the past two decades for their self-cleaning, anti-friction, anti-icing, and anti-corrosion properties. In this study, we introduce a simple and effective method for introducing porosity into polydimethylsiloxane (PDMS) micropillar arrays using salt templating. We then evaluate the wetting behaviour of these surfaces before and after infusion with perfluoropolyether (PFPE) oil. Apparent contact angle and sliding angle were measured relative to a non-porous control surface. Across five porous variants, the contact angle decreased by approximately 5° (from 157° to 152° on average), while the sliding angle increased by about 3.5° (from 16.5° to 20° on average). Following PFPE infusion, the porous arrays exhibited reduced sliding angles while maintaining superhydrophobicity. These results indicate that introducing porosity slightly reduces water repellency and droplet mobility, whereas PFPE infusion restores mobility while preserving high water repellency. The change in wettability following PFPE infusion highlights the potential of these surfaces to function as robust, self-cleaning materials.