Electromechanical and Acoustic Characterization of Dual Mode Rectangular PMUT
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Multifrequency operation in micromachined ultrasonic transducers, enabled by targeted excitation of specific vibrational modes, has emerged as an attractive approach for achieving tunable performance and configurability, well-suited for advanced ultrasound imaging and therapeutic applications. This paper presents a dual-electrode rectangular piezoelectric micromachined ultrasonic transducer (PMUT) designed for efficient dual-frequency operation through mode selective actuation. The proposed architecture employs segmented electrodes that are spatially aligned with the strain distributions of two distinct flexural modes, enabling selective excitation of Mode 1 (fundamental) and Mode 3 (higher order) through appropriate electrode actuation. Finite element simulations and impedance analysis were used to guide the electrode configuration and validate the mode-selective behavior. The dual-mode PMUT was fabricated alongside a conventional single-electrode PMUT using identical membrane dimensions and material stack for direct comparison. Comprehensive electrical and underwater acoustic characterization confirmed that the conventional PMUT is limited to single-frequency operation at the fundamental resonance. In contrast, the proposed design achieved a substantial improvement in higher-order performance, with a threefold increase in acoustic pressure at Mode 3 compared to the conventional device. These results demonstrate that mode-aligned electrode segmentation enables efficient dual-mode operation without added fabrication complexity, making the design highly suitable for multifrequency ultrasonic applications such as biomedical imaging and sensing.