Operator Learning with Branch–Trunk Factorization for Macroscopic Short-Term Speed Forecasting

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Logistics operations demand real-time visibility and rapid response, yet minute-level traffic speed forecasting remains challenging due to heterogeneous data sources and frequent distribution shifts. This paper proposes a Deep Operator Network (DeepONet)-based framework that treats traffic prediction as learning a mapping from historical states and boundary conditions to future speed states, enabling robust forecasting under changing scenarios. We project logistics demand onto a road network to generate diverse congestion scenarios and employ a branch–trunk architecture to decouple historical dynamics from exogenous contexts. Experiments on both a controlled simulation dataset and the real-world Metropolitan Los Angeles (METR-LA) benchmark demonstrate that the proposed method outperforms classical regression and deep learning baselines in cross-scenario generalization. Specifically, the operator learning approach effectively adapts to unseen boundary conditions without retraining, establishing a promising direction for resilient and adaptive logistics forecasting.

Article activity feed