Autoformer-Based Sales and Inventory Forecasting for Cross-Border E-Commerce: A Time Series Deep Learning Approach

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Accurate forecasting of product sales and inventory is a critical task for cross-border e-commerce platforms, where demand volatility, long logistics cycles, and dynamic pricing present significant challenges for efficient supply chain management. Traditional statistical and short-term machine learning models often fail to capture long-term dependencies and complex seasonal variations in sales data, leading to inaccurate demand planning and inefficient inventory allocation. To address this limitation, we propose a forecasting framework based on the Autoformer model, a deep learning architecture designed for long-sequence time series prediction. The model leverages series decomposition blocks to separate trend and seasonal components, and employs an auto-correlation mechanism to enhance the capture of periodic demand patterns in product sales and inventory turnover. We evaluate the framework on a real-world cross-border e-commerce dataset comprising transaction-level order volume, prices, inventory records, and external market indicators such as exchange rates and shipping costs. Experimental results show that the proposed Autoformer-based approach achieves superior forecasting accuracy compared with baseline models including LSTM, Transformer, and Informer. Specifically, our model reduces prediction error with a Mean Absolute Error (MAE) of 18.6 and a Root Mean Square Error (RMSE) of 25.4, representing a 17.3% improvement over the best-performing baseline. These findings highlight the potential of Autoformer for enhancing sales forecasting, reducing stockouts, and improving inventory turnover in cross-border e-commerce platforms, thereby supporting more effective logistics management and strategic decision-making.

Article activity feed