Takens-Based Kernel Transfer Entropy Connectivity Network for Motor Imagery Classification
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Reliable decoding of motor imagery (MI) from electroencephalographic signals remains a challenging problem due to their nonlinear, noisy, and non-stationary nature. To address this issue, this work proposes an end-to-end deep learning model, termed TEKTE-Net, that integrates time embeddings with a kernelized Transfer Entropy estimator to infer directed functional connectivity in MI-based brain–computer interface (BCI) systems. The proposed model incorporates a customized convolutional module that performs Takens' embedding, enabling the decoding of the underlying EEG activity without requiring explicit preprocessing. Further, the architecture estimates nonlinear and time-delayed interactions between cortical regions using Rational Quadratic kernels within a differentiable framework. Evaluation of TEKTE-Net on semi-synthetic causal benchmarks and the BCI Competition IV 2a dataset demonstrates robustness to low signal-to-noise conditions and interpretability through temporal, spatial, and spectral analyses of learned connectivity patterns. In particular, the model automatically highlights contralateral activations during MI and promotes spectral selectivity for the beta and gamma bands. Overall, TEKTE-Net offers a fully trainable estimator of functional brain connectivity for decoding EEG activity, supporting MI-BCI applications, and promoting interpretability of deep learning models.