A Dual-Validation Framework for Temporal Robustness Assessment in Brain–Computer Interfaces for Motor Imagery

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Brain–computer interfaces using motor imagery (MI-BCIs) offer a promising noninvasive communication pathway between humans and engineered equipment such as robots. However, for MI-BCIs based on electroencephalography (EEG), the reliability of the interface across recording sessions is limited by temporal non-stationary effects. Overcoming this barrier is critical to translating MI-BCIs from controlled laboratory environments to practical uses. In this paper, we present a comprehensive dual-validation framework to rigorously evaluate the temporal robustness of EEG signals of an MI-BCI. We collected data from six participants performing four motor imagery tasks (left/right hand and foot). Features were extracted using Common Spatial Patterns, and ten machine learning classifiers were assessed within a unified pipeline. Our method integrates within-session evaluation (stratified K-fold cross-validation) with cross-session testing (bidirectional train/test), complemented by stability metrics and performance heterogeneity assessment. Findings reveal minimal performance loss between conditions, with an average accuracy drop of just 2.5%. The AdaBoost classifier achieved the highest within-session performance (84.0% system accuracy, F1-score: 83.8%/80.9% for hand/foot), while the K-nearest neighbors (KNN) classifier demonstrated the best cross-session robustness (81.2% system accuracy, F1-score: 80.5%/80.2% for hand/foot, 0.663 robustness score). This study shows that robust performance across sessions is attainable for MI-BCI evaluation, supporting the pathway toward reliable, real-world clinical deployment.

Article activity feed