Hydrogen Injection into Natural Gas Grids as a Flexibility Option for Renewable Energy Integration and Storage
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The integration of renewable energy sources, particularly photovoltaic (PV) solar, is increasingly challenged by the limited flexibility and storage capacity of actual energy systems. Hydrogen produced via renewable-powered electrolysis offers a promising pathway to address these constraints. This paper explores hydrogen blending into the natural gas grid as a systemic solution to enhance power system flexibility and support renewable (PV) expansion. Methodologically, the analysis is based on actual grid flow dynamics rather than static averages, identifying network nodes with stable gas demand as the most suitable for hydrogen injection. The novelty of this study lies in framing power-to-gas coupling as an operational flexibility tool rather than a storage-only option, and in quantifying its potential contribution to PV deployment. The methodology is applied to the Italian energy system, chosen as a representative case of high PV penetration and gas dependency. Analysis indicates that under current regulatory constraints (up to 5% hydrogen blending), the additional PV capacity that could be effectively integrated remains limited, resulting in modest reductions in natural gas consumption (<1%) and CO2 emissions (~0.3%). However, the approach demonstrates the conceptual and methodological relevance of treating gas networks as dynamic elements of an integrated power-to-gas system. Hydrogen blending thus emerges as a transitional but essential step toward future multi-energy integration under evolving regulatory and economic frameworks.