Combining Deep Learning Architectures with Fuzzy Logic for Robust Pneumonia Detection in Chest X-Rays

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Early and accurate detection of pneumonia from chest X-ray images is essential for improving treatment and clinical outcomes. Medical imaging datasets often exhibit class imbalance and uncertainty in feature extraction, which complicates conventional classification methods and motivates the use of advanced approaches combining deep learning and fuzzy logic. This study proposes a hybrid approach that combines deep learning architectures (VGG16, EfficientNetV2, MobileNetV2, ResNet50) for feature extraction with fuzzy logic-based classifiers, including Fuzzy C-Means, Fuzzy Decision Tree, Fuzzy KNN, Fuzzy SVM, and ANFIS (Adaptive Neuro-Fuzzy Inference System). Feature selection techniques were also applied to enhance the discriminative power of the extracted features. The best-performing model, ANFIS with MobileNetV2 features and Gaussian membership functions, achieved an overall accuracy of 98.52%, with Normal class precision of 97.07%, recall of 97.48%, and F1-score of 97.27%, and Pneumonia class precision of 99.06%, recall of 98.91%, and F1-score of 98.99%. Among the fuzzy classifiers, Fuzzy SVM and Fuzzy KNN also showed strong performance with accuracy above 96%, while Fuzzy Decision Tree and Fuzzy C-Means achieved moderate results. These findings demonstrate that integrating deep feature extraction with neuro-fuzzy reasoning significantly improves diagnostic accuracy and robustness, providing a reliable tool for clinical decision support. Future research will focus on optimizing model efficiency, interpretability, and real-time applicability.

Article activity feed