Efficient Chest X-Ray Feature Extraction and Feature Fusion for Pneumonia Detection Using Lightweight Pretrained Deep Learning Models

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Pneumonia is a respiratory condition characterized by inflammation of the alveolar sacs in the lungs, which disrupts normal oxygen exchange. This disease disproportionately impacts vulnerable populations, including young children (under five years of age) and elderly individuals (over 65 years), primarily due to their compromised immune systems. The mortality rate associated with pneumonia remains alarmingly high, particularly in low-resource settings where healthcare access is limited. Although effective prevention strategies exist, pneumonia continues to claim the lives of approximately one million children each year, earning its reputation as a "silent killer." Globally, an estimated 500 million cases are documented annually, underscoring its widespread public health burden. This study explores the design and evaluation of the CNN-based Computer-Aided Diagnostic (CAD) systems with an aim of carrying out competent as well as resourceful classification and categorization of chest radiographs into binary classes (Normal, Pneumonia). An augmented Kaggle dataset of 18,200 chest radiographs, split between normal and pneumonia cases, was utilized. This study conducts a series of experiments to evaluate lightweight CNN models—ShuffleNet, NASNet-Mobile, and EfficientNet-b0—using transfer learning that achieved accuracy of 90%, 88% and 89%, prompting the task for deep feature extraction from each of the networks and applying feature fusion to further pair it with SVM classifier and XGBoost classifier, achieving an accuracy of 97% and 98% resepectively. The proposed research emphasizes the crucial role of CAD systems in advancing radiological diagnostics, delivering effective solutions to aid radiologists in distinguishing between diagnoses by applying feature fusion, feature selection along with various machine learning algorithms and deep learning architectures.

Article activity feed