Artificial Intelligence in Higher Education: Predictive Analysis of Attitudes and Dependency Among Ecuadorian University Students
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study examines the relationship between attitudes toward artificial intelligence (AI) and AI dependency among Ecuadorian university students. A cross-sectional design was used, applying two validated instruments: the Artificial Intelligence Dependence Scale (DAI) and the General Attitudes Toward Artificial Intelligence Scale (GAAIS), with a sample of 540 students. Structural equation modeling (SEM) assessed how both positive and negative attitudes predict dependency levels. Results indicate a moderate level of AI dependency and an ambivalent attitudinal profile. Both attitudinal dimensions significantly predicted dependency, suggesting dual-use behaviors shaped by perceived utility and ethical concerns. Urban students reported higher dependency and greater sensitivity to AI-related risks, highlighting digital inequalities. Although the SEM model showed adequate comparative fit (CFI = 0.976; TLI = 0.973), residual indicators (RMSEA = 0.075) suggest further refinement is needed. This study contributes to underexplored Latin American contexts and emphasizes the need for equity-driven digital literacy strategies in higher education. Findings support pedagogical frameworks promoting critical thinking, ethical reasoning, and responsible AI use. The study aligns with Sustainable Development Goals 4 (Quality Education) and 10 (Reduced Inequalities), reinforcing the importance of inclusive, learner-centered approaches to AI integration.