Ferrocene-Catalyzed Aromatization and Competitive Oxidative Ring Transformations of 1,2-Dihydro-1-Arylpyridazino[4,5-d]Pyridazines

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper presents the expected and unexpected, but typically substituent-dependent, ferrocene-catalyzed DDQ-mediated oxidative transformations of a series of 5,8-bis(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines and 8-(3,5-dimethyl-1H-pyrazol-1-yl)-5-(methylthio)-1-aryl-1,2-dihydropyridazino[4,5-d]pyridazines. Under noncatalytic conditions the reactions were sluggish, mainly producing a substantial amount of undefined tarry materials; nevertheless, the ferrocene-catalyzed reactions of the 5,8-bis(methylthio)-substituted precursors gave the aromatic products the expected aromatic products in low yields. Their formation was accompanied by ring transformations proceeding via aryne-generating fragmentation/Diels–Alder (DA)/N2-releasing retro Diels–Alder (rDA) sequence to construct arene-fused phthalazines. On the other hand, neither the noncatalytic nor the catalytic reactions of the 8-pyrazolyl-5-methylthio-substituted dihydroaromatics yielded the expected aromatic products. Instead, depending on their substitution pattern, the catalytic reactions of these pyrazolyl-substituted precursors also led to the formation of dearylated arene-fused phthalazines competing with an unprecedented multistep fragmentation sequence terminated by the hydrolysis of cationic intermediates to give 4-(methylthio)pyridazino[4,5-d]pyridazin-1(2H)-one and the corresponding 3,5-dimethyl-1-aryl-1H-pyrazole. When 0.6 equivalents of DDQ were applied in freshly absolutized THF, a representative pyrazolyl-substituted model underwent an oxidative coupling to give a dimer formed by the interaction of the cationic intermediate, and a part of the N-nucleophilic precursor remained intact. A systematic computational study was conducted on these intriguing reactions to support their complex mechanisms proposed on the basis of the structures of the isolated products.

Article activity feed