Intelligence Architectures and Machine Learning Applications in Contemporary Spine Care

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The rapid evolution of artificial intelligence (AI) and machine learning (ML) technologies has initiated a paradigm shift in contemporary spine care. This narrative review synthesizes advances across imaging-based diagnostics, surgical planning, genomic risk stratification, and post-operative outcome prediction. We critically assess high-performing AI tools, such as convolutional neural networks for vertebral fracture detection, robotic guidance platforms like Mazor X and ExcelsiusGPS, and deep learning-based morphometric analysis systems. In parallel, we examine the emergence of ambient clinical intelligence and precision pharmacogenomics as enablers of personalized spine care. Notably, genome-wide association studies (GWAS) and polygenic risk scores are enabling a shift from reactive to predictive management models in spine surgery. We also highlight multi-omics platforms and federated learning frameworks that support integrative, privacy-preserving analytics at scale. Despite these advances, challenges remain—including algorithmic opacity, regulatory fragmentation, data heterogeneity, and limited generalizability across populations and clinical settings. Through a multidimensional lens, this review outlines not only current capabilities but also future directions to ensure safe, equitable, and high-fidelity AI deployment in spine care delivery.

Article activity feed