Impact of hMLH1 −93G>A (rs1800734) and hMSH2 1032G>A (rs4987188) Polymorphisms on Colorectal Cancer Susceptibility

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: This study is the first to investigate the association between colorectal cancer (CRC) risk and the hMLH1 −93G>A and hMSH2 1032G>A polymorphisms of mismatch repair (MMR) genes in the Azerbaijani population. Methods: Peripheral blood samples containing EDTA were collected from the study subjects (134 patients and 137 controls), and genomic DNA was extracted using the non-enzymatic salting-out method. Genotypes were determined by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), and the results were visualized through agarose gel electrophoresis. Results: Overall, no statistically significant correlation was observed between CRC risk and the hMLH1 −93G>A polymorphism in the heterozygous GA (OR = 0.760; 95% CI = 0.374–1.542; p = 0.446), the mutant AA (OR = 1.474; 95% CI = 0.738–2.945; p = 0.270), or the A allele (OR = 1.400; 95% CI = 0.984–1.995; p = 0.062). However, in contrast to the dominant model, a statistically significant association was found between the recessive model and an increased CRC risk, with an odds ratio of 1.788 (95% CI = 1.102–2.900; p = 0.018). The hMLH1 −93G>A polymorphism was identified at a significantly higher frequency across the TNM stages, with the distribution showing statistical significance (p < 0.05). Additionally, no statistically significant association was observed between the hMSH2 1032G>A polymorphism and CRC risk. Conclusions: Although no overall association was observed for hMLH1 −93G>A, our findings suggest a potential link with increased colorectal cancer risk under the recessive model in the Azerbaijani population. Further studies are warranted to confirm this model-specific association and investigate the underlying biological mechanisms.

Article activity feed