Accelerating CRYSTALS-Kyber: High-Speed NTT Design with Optimized Pipelining and Modular Reduction
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The Number Theoretic Transform (NTT) is a cornerstone for efficient polynomial multiplication, which is fundamental to lattice-based cryptographic algorithms such as CRYSTALS-Kyber—a leading candidate in post-quantum cryptography (PQC). However, existing NTT accelerators often rely on integer multiplier-based modular reduction techniques, such as Barrett or Montgomery reduction, which introduce significant computational overhead and hardware resource consumption. These accelerators also lack optimization in unified architectures for forward (FNTT) and inverse (INTT) transformations. Addressing these research gaps, this paper introduces a novel, high-speed NTT accelerator tailored specifically for CRYSTALS-Kyber. The proposed design employs an innovative shift-add modular reduction mechanism, eliminating the need for integer multipliers, thereby reducing critical path delay and enhancing circuit frequency. A unified pipelined butterfly unit, capable of performing FNTT and INTT operations through Cooley-Tukey and Gentleman-Sande configurations, is integrated into the architecture. Additionally, a highly efficient data handling mechanism based on Register banks supports seamless memory access, ensuring continuous and parallel processing. The complete architecture, implemented in Verilog HDL, has been evaluated on FPGA platforms (Virtex-5, Virtex-6, and Virtex-7). Post place-and-route results demonstrate a maximum operating frequency of 261 MHz on Virtex-7, achieving a throughput of 290.69 Kbps—1.45x and 1.24x higher than its performance on Virtex-5 and Virtex-6, respectively. Furthermore, the design boasts an impressive throughput-per-slice metric of 111.63, underscoring its resource efficiency. With a 1.27x reduction in computation time compared to state-of-the-art single butterfly unit-based NTT accelerators, this work establishes a new benchmark in advancing secure and scalable cryptographic hardware solutions.