Cell Line-Dependent Internalization, Persistence, and Immunomodulatory Effects of Staphylococcus aureus in Triple-Negative Breast Cancer

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited therapeutic options and inconsistent response to immune checkpoint inhibitors (ICIs). Emerging evidence indicates that tumor-associated bacteria may shape immune signaling and alter immunotherapy outcomes. Here, we investigated whether Staphylococcus aureus invades TNBC cells, persists intracellularly, and modulates PD-L1 expression. Methods: Using eFluor450-labeled S. aureus for flow cytometry, gentamicin protection assays, CFU quantification, and transmission electron microscopy, we assessed bacterial uptake and persistence in six TNBC cell lines and a non-tumorigenic control. PD-L1, TLR2, and STAT1 activation were evaluated after infection or TLR2 ligand treatment ± IFN-γ. Results: At multiplicity of infection (MOI) of 10, S. aureus internalized into 67% of MDA-MB-468 and 54% of MDA-MB-231, with intermediate uptake in Hs578T (27%) and BT-549 (24%) and only 0.5–9% in low-uptake lines (MDA-MB-453, CAL-51, MCF-12A). High-uptake lines exhibited marked cytotoxicity and reduced proliferation, with MDA-MB-468 showing an 82% drop in viability at 2 h and a 74% decrease after 5 d, whereas low-uptake lines showed minimal impact. Persistence lasted >7 d in MDA-MB-231 but only 3–5 days in others. IFN-γ plus S. aureus significantly amplified PD-L1, with up to a 2.9-fold increase in MDA-MB-468 and 1.5-fold in MDA-MB-231, but no effect in low-uptake lines. TLR2 agonists modestly increased PD-L1 in high-TLR2-expressing lines and synergized with IFN-γ. These effects were accompanied by STAT1 phosphorylation, supporting a TLR2/STAT1 axis linking bacterial sensing to immune checkpoint regulation. Conclusions: Together, these findings identify S. aureus as a modulator of immune signaling in TNBC and highlight the potential for microbial factors to influence ICI responsiveness. Targeting tumor–bacteria interactions may represent a novel strategy to enhance immunotherapy efficacy in breast cancer.

Article activity feed