p38 blockade reverses the immune suppressive tumor microenvironment in metastatic breast cancer

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Metastatic breast cancer (MBC) is a life-threatening disease with limited therapeutic options. The immune suppressive tumor microenvironment (TME) limits the potency of the antitumor immune response and facilitates disease progression and metastasis. Our current study demonstrates that p38α is a druggable target in the TME that regulates the outcome of the immune-tumor interaction. The study revealed that systemic blockade of p38α reduces metastasis, and this anti-metastatic response is negated by depletion of CD8+ T cells. Single-cell transcriptomic analysis of the immune-TME showed that pharmacological p38 inhibition (p38i) or tumor-specific inactivation of p38α by CRISPR/Cas9 (p38KO) resulted in a less exhausted and more activated CD8+ T cell phenotype. Immunophenotyping analyses demonstrated that p38 blockade reduced the expression of multiple inhibitory receptors on CD8+ T cells (i.e., PD-1, LAG-3, CTLA-4), indicating a reversal of immune exhaustion and enhanced immune activation systemically and in the TME. In contrast, p38 blockade did not exhibit inhibitory effects on T cells in proliferation assays in vitro and did not affect the proportion of regulatory T cells in vivo. The major negative impact of p38 blockade in vivo was on the myeloid populations, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Further, tumor p38α activity was required for the expression of cytokines/chemokines and tumor-derived exosomes with high chemotactic capacity for myeloid cells. Altogether, this study highlights a previously unrecognized p38α-driven pathway that promotes an immune suppressive TME and metastasis, and that therapeutic blockade of p38α has important implications for improving antitumor immunity and patient outcomes.

Article activity feed