Genome Mining of Pseudarthrobacter sp. So.54, a Rhizospheric Bacteria from Colobanthus quitensis Antarctic Plant

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Antarctic microorganisms have genomic characteristics and biological functions to ensure survival in complex habitats, potentially representing bioactive compounds of biotechnological interest. Pseudarthrobacter sp. So.54 is an Antarctic bacteria strain isolated from the rhizospheric soil of Colobanthus quitensis. Our work aimed to study its genomic characteristics and metabolic potential, linked to environmental adaptation and the production of secondary metabolites with possible biotechnological applications. Whole-genome sequencing, assembly, phylogenetic analysis, functional annotation, and genomic islands prediction were performed to determine the taxonomic affiliation and differential characteristics of the strain So.54. Additionally, Biosynthetic Gene Clusters (BGCs) responsible for secondary metabolites production were identified. The assembled genome of strain So.54 has 3,871,805 bp with 66.0 % G + C content. Phylogenetic analysis confirmed that strain So.54 belongs to the Pseudarthrobacter genus, nevertheless, its nucleotide and amino acid identity values were below the species threshold. The main metabolic pathways and 64 genomic islands associated with stress defense and environmental adaptation, such as heavy metal resistance genes, were identified. AntiSMASH analysis predicted six BGCs with low or no similarity to known clusters, suggesting potential as novel natural products. These findings indicate that strain So.54 could be a novel Pseudarthrobacter species with significant environmental adaptation and biotechnological potential.

Article activity feed