Assessing Climate Change Impacts on Combined Sewer Overflows: A Modelling Perspective

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The study examines the impacts of climate change on the operation and capacity of the combined sewer network in the historic center of Thessaloniki, Greece. Rainfall data from three high-resolution Regional Climate Models (RCMs), namely (a) the Cosmo climate model (CCLM), (b) the regional atmospheric climate model (RACMO) and (c) the regional model (REMO), from the MED-CORDEX initiative with future estimations based on Representative Concentration Pathway (RCP) 4.5, are first corrected for bias based on existing measurements in the study area. Intensity–duration–frequency (IDF) curves are then constructed for future data using a temporal downscaling approach based on the scaling of the Generalized Extreme Value (GEV) distribution to derive the relationships between daily and sub-daily precipitation. Projected rainfall events associated with various return periods are subsequently developed and utilized as input parameters for the hydrologic–hydraulic model. The simulation results for each return period are compared with those of the current climate, and the projections from various RCMs are ranked according to their impact on the combined sewer network and overflow volumes. In the short term (2020–2060), the CCLM and REMO project a decrease in CSO volumes compared to current conditions, while the RACMO predicts an increase, highlighting uncertainties in short-term climate projections. In the long term (2060–2100), all models indicate a rise in combined sewer overflow volumes, with CCLM showing the most significant increase, suggesting escalating pressure on urban drainage systems due to more intense rainfall events. Based on these findings, it is essential to adopt mitigation strategies, such as nature-based solutions, to reduce peak flows within the network and alleviate the risk of flooding.

Article activity feed