Hybrid Energy Storage System for Regenerative Braking Utilization and Peak Power Decrease in 3 kV DC Railway Electrification System

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper proposes the sizing optimization method and energy management strategy for a stationary hybrid energy storage system dedicated to a DC traction power supply system. The hybrid energy storage system consists of two modules—a supercapacitor, mainly dedicated to regenerative energy utilization, and a Li-ion battery, aimed to peak power reduction. The sizing method and energy management strategy proposed in this paper aim to reduce the aging effect of lithium-ion batteries. It is shown that the parameters of both modules could be sized independently. The supercapacitor module parameters are sized based on the results of a simulation determining the regenerative power, resulting in limited catenary receptivity. The simulation model of the DC electrification system is validated by comparing the results of the simulation with the measurements of 15 min average power in a 24 h cycle as average values of one year. The battery module is sized based on the statistical data of 15 min substation power value occurrences. The battery energy capacity, its maximum discharge C-rate, and the conditions determining its operation are optimized to achieve the maximum ratio of annual income resulting from peak power reduction to annual operating cost resulting from the battery aging process and total life cycle. The case study prepared for a typical 3 kV DC substation with mixed railway traffic shows that peak power could be reduced by ~1 MW, giving a ~10-year payback period for battery module installation, while the energy consumption could be decreased by 1.9 MWh/24 h, giving a ~7.5-year payback period for supercapacitor module installation. The payback period of the whole energy storage system (ESS) is ~8.4 years.

Article activity feed