Integrating Electromagnetic Interactions into the QMM Framework

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We present a framework extending the Quantum Memory Matrix (QMM) principles, originally formulated to reconcile quantum mechanics and gravity, to the domain of electromagnetism. In this discretized space–time approach, Planck-scale quantum cells act as memory units that store information via local quantum imprints of field interactions. By introducing gauge-invariant imprint operators for the electromagnetic field, we maintain unitarity, locality, and the equivalence principle while encoding electromagnetic data directly into the fabric of space–time. This construction ensures that black hole evaporation, including for charged black holes, respects unitarity, with initially hidden quantum information emerging through subtle, non-thermal correlations in the emitted radiation. The QMM framework also imposes a natural ultraviolet cutoff, potentially modifying vacuum polarization and charge renormalization, and may imprint observable signatures in the cosmic microwave background or large-scale structures from primordial electromagnetic fields. Compared to other unification proposals, QMM does not rely on nonlocal processes or exotic geometries, favoring a local, covariant, and gauge-invariant mechanism. Although direct Planck-scale tests remain challenging, indirect observational strategies—ranging from gravitational wave analyses to laboratory analog experiments—could probe QMM-like phenomena and guide the development of a fully unified theory encompassing all fundamental interactions.

Article activity feed