Scanning Miniaturized Magnetometer Based on Diamond Quantum Sensors and Its Potential Application for Hidden Target Detection
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
We have developed a miniaturized magnetic sensor based on diamond nitrogen-vacancy (NV) centers, combined with a two-dimensional scanning setup that enables imaging magnetic samples with millimeter-scale resolution. Using the lock-in detection scheme, we tracked changes in the NV’s spin resonances induced by the magnetic field from target samples. As a proof-of-principle demonstration of magnetic imaging, we used a toy diorama with hidden magnets to simulate scenarios such as the remote detection of landmines on a battlefield or locating concealed objects at a construction site, focusing on image analysis rather than addressing sensitivity for practical applications. The obtained magnetic images reveal that they can be influenced and distorted by the choice of frequency point used in the lock-in detection, as well as the magnitude of the sample’s magnetic field. Through magnetic simulations, we found good agreement between the measured and simulated images. Additionally, we propose a method based on NV vector magnetometry to compensate for the non-zero tilt angles of a target, enabling the accurate localization of its position. This work introduces a novel imaging method using a scanning miniaturized magnetometer to detect hidden magnetic objects, with potential applications in military and industrial sectors.