ISM: A New Space-Learning Model for Heterogenous Multi-view Data Reduction, Visualization and Clustering

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We describe a new approach for integrating multiple views of data into a common latent space using non-negative tensor factorization (NTF). This approach, which we refer to as the "Integrated Sources Model" (ISM), consists of two main steps: embedding and analysis. In the embedding step, each view is transformed into a matrix with common non-negative components. In the analysis step, the transformed views are combined into a tensor and decomposed using NTF. Noteworthy, ISM can be extended to process multi-view data sets with missing views. We illustrate the new approach using two examples: the UCI digit dataset and a public cell type gene signatures dataset, to show that multi-view clustering of digits or marker genes by their respective cell type is better achieved with ISM than with other latent space approaches. We also show how the non-negativity and sparsity of the ISM model components enable straightforward interpretations, in contrast to latent factors of mixed signs. Finally, we present potential applications to single-cell multi-omics and spatial mapping, including spatial imaging and spatial transcriptomics, and computational biology, which are currently under evaluation. ISM relies on state-of-the-art algorithms invoked via a simple workflow implemented in a Jupyter Python notebook.

Article activity feed