Mutations in SARS-CoV-2 are on the increase against the acquired immunity

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Monovalent vaccines using mRNA or adenoviruses have provided substantial protection against the COVID-19 pandemic in many countries. However, viral mutations have hampered the efficacy of this approach. The Omicron variant, which appeared in Dec 2021, has caused a pandemic that has exerted pressure on the healthcare system worldwide. The COVID-19 vaccines are not very effective against this variant, resulting in an increased rate of infection and mortality. Owing to the rapidly increasing number of patients, few countries, such as Australia, New Zealand, and Taiwan, which aimed at zero-COVID cases, have discontinued their attempts to contain the spread of infection by imposing strict lockdowns, for example. Therefore, the administration of booster vaccinations has been initiated; however, there are concerns about their effectiveness, sustainability, and possible dangers. There is also the question of how a variant with such isolated mutations originated and whether this is likely to continue in the future. Here, we compare the mutations in the Omicron variant with others by direct PCA to consider questions pertaining to their evolution and characterisation. The Omicron variant, like the other variants, has mutated in humans. The accumulated mutations overwhelmed the acquired immunity and caused a pandemic. Similar mutations are likely to occur in the future. Additionally, the variants infecting animals were investigated; they rapidly mutated in animals and varied from the human strains. These animal-adapted strains are probably not highly infectious or pathogenic to humans. Hence, the possibility of using these strains as vaccines will be discussed.

Article activity feed

  1. SciScore for 10.1101/2022.01.30.22270133: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.