Lessons from a pandemic

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Several interventions have been used around the world trying to contain the SARS-CoV-2 pandemic, such as quarantine, prohibition of mass demonstrations, isolation of sick people, tracing of virus carriers, semi-containment, promotion of barrier gestures, development of rapid self-tests and vaccines among others. We propose a simple model to evaluate the potential impact of such interventions. A model for the reproduction number of an infectious disease including three main contexts of infection (indoor mass events, public indoor activities and household) and seven parameters is considered. We illustrate how these parameters could be obtained from the literature or from expert assumptions, and we apply the model to describe 20 scenarios that can typically occur during the different phases of a pandemic. This model provides a useful framework for better understanding and communicating the effects of different (combinations of) possible interventions, while encouraging constant updating of expert assumptions to better match reality. This simple approach will bring more transparency and public support to help governments to think, decide, evaluate and adjust what to do during a pandemic.

Article activity feed

  1. SciScore for 10.1101/2022.03.30.22273190: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Our model has of course limitations. An important one is that we are not able to recognize that a strict full-containment would be effective (even if it is difficult to implement and to get a population to accept), as shown during the first wave of SARS-Cov-2 epidemic in China. This is because the proportion of immunized persons in our model is assumed to be stable and identical in all three strata. In particular, we do not capture in our model that the proportion of immunized persons in an infected household will increase rapidly in the event of a full-containment, so that there will be no one left to infect, thus stopping the epidemics. This will also apply to a lesser extend in a semi-containment [33,34]. We are currently investigating ways to extend our model in this respect, to take into account the fact that herd immunity is reached more quickly in households than in the general population. Other limitations of our model include the following. We are not able to assess the role of border controls to limit the circulation of virus variants. As mentioned in the Methods section, we ignored the important stratum of the homes for the elderly, while we did not consider the specific situation of children. A model with more than three strata might be preferable, although this would imply a larger number of parameters to estimate. In the end, our model is probably too simple. Note that the use of more sophisticated models (SEIR compartmental models or others) provided similar re...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.