Optimizing COVID-19 surveillance in long-term care facilities: a modelling study

This article has been Reviewed by the following groups

Read the full article

Abstract

Background

Long-term care facilities (LTCFs) are vulnerable to outbreaks of coronavirus disease 2019 (COVID-19). Timely epidemiological surveillance is essential for outbreak response, but is complicated by a high proportion of silent (non-symptomatic) infections and limited testing resources.

Methods

We used a stochastic, individual-based model to simulate transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) along detailed inter-individual contact networks describing patient-staff interactions in a real LTCF setting. We simulated distribution of nasopharyngeal swabs and reverse transcriptase polymerase chain reaction (RT-PCR) tests using clinical and demographic indications and evaluated the efficacy and resource-efficiency of a range of surveillance strategies, including group testing (sample pooling) and testing cascades, which couple (i) testing for multiple indications (symptoms, admission) with (ii) random daily testing.

Results

In the baseline scenario, randomly introducing a silent SARS-CoV-2 infection into a 170-bed LTCF led to large outbreaks, with a cumulative 86 (95% uncertainty interval 6–224) infections after 3 weeks of unmitigated transmission. Efficacy of symptom-based screening was limited by lags to symptom onset and silent asymptomatic and pre-symptomatic transmission. Across scenarios, testing upon admission detected just 34–66% of patients infected upon LTCF entry, and also missed potential introductions from staff. Random daily testing was more effective when targeting patients than staff, but was overall an inefficient use of limited resources. At high testing capacity (> 10 tests/100 beds/day), cascades were most effective, with a 19–36% probability of detecting outbreaks prior to any nosocomial transmission, and 26–46% prior to first onset of COVID-19 symptoms. Conversely, at low capacity (< 2 tests/100 beds/day), group testing strategies detected outbreaks earliest. Pooling randomly selected patients in a daily group test was most likely to detect outbreaks prior to first symptom onset (16–27%), while pooling patients and staff expressing any COVID-like symptoms was the most efficient means to improve surveillance given resource limitations, compared to the reference requiring only 6–9 additional tests and 11–28 additional swabs to detect outbreaks 1–6 days earlier, prior to an additional 11–22 infections.

Conclusions

COVID-19 surveillance is challenged by delayed or absent clinical symptoms and imperfect diagnostic sensitivity of standard RT-PCR tests. In our analysis, group testing was the most effective and efficient COVID-19 surveillance strategy for resource-limited LTCFs. Testing cascades were even more effective given ample testing resources. Increasing testing capacity and updating surveillance protocols accordingly could facilitate earlier detection of emerging outbreaks, informing a need for urgent intervention in settings with ongoing nosocomial transmission.

Article activity feed

  1. SciScore for 10.1101/2020.04.19.20071639: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    However, resource limitations were in part overcome by group testing: in our analysis, group testing was the most effective means of COVID-19 surveillance under limited testing capacity, and group testing strategies were among the most resource efficient means to improve surveillance outcomes with respect to a "bare minimum” reference of only testing individuals with severe COVID-like symptoms. Recent mathematical modeling results have further suggested that group testing could be cost-effective for COVID-19 screening in large populations.(33) As with cascades, LTCFs interested in group testing may consider a wider range of indications than was possible to include in this study, in order to maximize the probability of including potentially infected patients and staff in routine group tests. Our analysis was limited to classical two-stage group testing, initially proposed by Dorfman in 1943 for syphilis screening among World War II soldiers,(53) in which all individuals in a positive group test are individually re-tested to determine who is infected. This is regarded as the most straightforward approach,(36) and we conservatively assumed re-swabbing in addition to re-testing of all individuals in a positive group test to account for potential logistical challenges of storing and maintaining large numbers of swabs for re-testing. Various alternative group testing strategies have been proposed and implemented elsewhere, including the use of simultaneous multi-pool samples, non-a...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.