Ethnic and socioeconomic differences in SARS-CoV-2 infection: prospective cohort study using UK Biobank

This article has been Reviewed by the following groups

Read the full article

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Background

Understanding of the role of ethnicity and socioeconomic position in the risk of developing SARS-CoV-2 infection is limited. We investigated this in the UK Biobank study.

Methods

The UK Biobank study recruited 40–70-year-olds in 2006–2010 from the general population, collecting information about self-defined ethnicity and socioeconomic variables (including area-level socioeconomic deprivation and educational attainment). SARS-CoV-2 test results from Public Health England were linked to baseline UK Biobank data. Poisson regression with robust standard errors was used to assess risk ratios (RRs) between the exposures and dichotomous variables for being tested, having a positive test and testing positive in hospital. We also investigated whether ethnicity and socioeconomic position were associated with having a positive test amongst those tested. We adjusted for covariates including age, sex, social variables (including healthcare work and household size), behavioural risk factors and baseline health.

Results

Amongst 392,116 participants in England, 2658 had been tested for SARS-CoV-2 and 948 tested positive (726 in hospital) between 16 March and 3 May 2020. Black and south Asian groups were more likely to test positive (RR 3.35 (95% CI 2.48–4.53) and RR 2.42 (95% CI 1.75–3.36) respectively), with Pakistani ethnicity at highest risk within the south Asian group (RR 3.24 (95% CI 1.73–6.07)). These ethnic groups were more likely to be hospital cases compared to the white British. Adjustment for baseline health and behavioural risk factors led to little change, with only modest attenuation when accounting for socioeconomic variables. Socioeconomic deprivation and having no qualifications were consistently associated with a higher risk of confirmed infection (RR 2.19 for most deprived quartile vs least (95% CI 1.80–2.66) and RR 2.00 for no qualifications vs degree (95% CI 1.66–2.42)).

Conclusions

Some minority ethnic groups have a higher risk of confirmed SARS-CoV-2 infection in the UK Biobank study, which was not accounted for by differences in socioeconomic conditions, baseline self-reported health or behavioural risk factors. An urgent response to addressing these elevated risks is required.

Article activity feed

  1. SciScore for 10.1101/2020.04.22.20075663: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board Statementnot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.
    Sex as a biological variablenot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    However, several potential limitations should be noted. Ascertainment bias is potentially problematic and could arise in several ways, including differential healthcare seeking, differential testing and differential prognosis. Even so, we have been unable to find any evidence to suggest that differential healthcare seeking or testing would explain the observed pattern of findings. Increased ascertainment amongst ethnic minorities would be expected to result in a lower proportion of confirmed cases amongst those tested whereas we observed the opposite. One possibility that remains is that some ethnic and socioeconomic groups have a poorer prognosis and are therefore more likely to be admitted to hospital and therefore to be tested. However, if this were the case, the issue of more adverse outcomes among these groups remains concerning. Other limitations include the non-representativeness of the UK Biobank study population, with those who were more advantaged being more likely to participate and ethnic minorities less well represented. There is therefore the potential that the findings in our study may not reflect the broader UK population.18 However, empirical research has found that this does not result in substantial bias in measures of association in the UK Biobank study.19 We have also been unable to fully exclude all deaths that occurred prior to the pandemic, due to lack of up-to-date linkage to mortality records at present. Our exposure data were collected some years ag...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.

  2. SciScore for 10.1101/2020.04.22.20075663: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Institutional Review Board StatementAll participants provided written informed consent before enrolment in the study , which was conducted in accordarce with the Declaration of Helsinki.Randomizationnot detected.Blindingnot detected.Power Analysisnot detected.Sex as a biological variableAge , male sex and pre-existing medical conditions are established predictors of adverse COVID-19 outcomes , as is excess adiposity,2 but the role of social determinants is poorly understood.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Methods Study design and participants Data were obtained from UK Biobank ( https://www.ukbiobank.ac.uk/) , with the methods described in detail previously.
    https://www.ukbiobank.ac.uk/
    suggested: (UK Biobank, SCR_012815)

    Results from OddPub: We did not find a statement about open data. We also did not find a statement about open code. Researchers are encouraged to share open data when possible (see Nature blog).


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore is not a substitute for expert review. SciScore checks for the presence and correctness of RRIDs (research resource identifiers) in the manuscript, and detects sentences that appear to be missing RRIDs. SciScore also checks to make sure that rigor criteria are addressed by authors. It does this by detecting sentences that discuss criteria such as blinding or power analysis. SciScore does not guarantee that the rigor criteria that it detects are appropriate for the particular study. Instead it assists authors, editors, and reviewers by drawing attention to sections of the manuscript that contain or should contain various rigor criteria and key resources. For details on the results shown here, please follow this link.