Should international borders re-open? The impact of travel restrictions on COVID-19 importation risk

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Background

Novel coronavirus disease (COVID-19) has spread across the world at an unprecedented pace, reaching over 200 countries and territories in less than three months. In response, many governments denied entry to travellers arriving from various countries affected by the virus. While several industries continue to experience economic losses due to the imposed interventions, it is unclear whether the different travel restrictions were successful in reducing COVID-19 importations.

Methods

Here we develop a comprehensive probabilistic framework to model daily COVID-19 importations, considering different travel bans. We quantify the temporal effects of the restrictions and elucidate the relationship between incidence rates in other countries, travel flows and the expected number of importations into the country under investigation.

Results

As a cases study, we evaluate the travel bans enforced by the Australian government. We find that international travel bans in Australia lowered COVID-19 importations by 87.68% (83.39 - 91.35) between January and June 2020. The presented framework can further be used to gain insights into how many importations to expect should borders re-open.

Conclusions

While travel bans lowered the number of COVID-19 importations overall, the effectiveness of bans on individual countries varies widely and directly depends on the change in behaviour in returning residents and citizens. Authorities may consider the presented information when planning a phased re-opening of international borders.

Article activity feed

  1. SciScore for 10.1101/2020.10.11.20211060: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    All calculations have been carried out with Python’s pmdarima statistical library.
    Python’s
    suggested: (PyMVPA, RRID:SCR_006099)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.