How did governmental interventions affect the spread of COVID-19 in European countries?
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
Background
To reduce the transmission of the severe acute respiratory syndrome coronavirus 2 in its first wave, European governments have implemented successive measures to encourage social distancing. However, it remained unclear how effectively measures reduced the spread of the virus. We examined how the effective-contact rate (ECR), the mean number of daily contacts for an infectious individual to transmit the virus, among European citizens evolved during this wave over the period with implemented measures, disregarding a priori information on governmental measures.
Methods
We developed a data-oriented approach that is based on an extended Susceptible-Exposed-Infectious-Removed (SEIR) model. Using the available data on the confirmed numbers of infections and hospitalizations, we first estimated the daily total number of infectious-, exposed- and susceptible individuals and subsequently estimated the ECR with an iterative Poisson regression model. We then compared change points in the daily ECRs to the moments of the governmental measures.
Results
The change points in the daily ECRs were found to align with the implementation of governmental interventions. At the end of the considered time-window, we found similar ECRs for Italy (0.29), Spain (0.24), and Germany (0.27), while the ECR in the Netherlands (0.34), Belgium (0.35) and the UK (0.37) were somewhat higher. The highest ECR was found for Sweden (0.45).
Conclusions
There seemed to be an immediate effect of banning events and closing schools, typically among the first measures taken by the governments. The effect of additionally closing bars and restaurants seemed limited. For most countries a somewhat delayed effect of the full lockdown was observed, and the ECR after a full lockdown was not necessarily lower than an ECR after (only) a gathering ban.
Article activity feed
-
SciScore for 10.1101/2020.05.27.20114272: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Several limitations of our study need to be addressed. First, our method did not provide estimates of effect sizes for the different measures, contrarily to what is done in previous papers1,4, and therefore our results may seem more exploratory. We explicitly made this choice, since interventions were often taken simultaneously and there …
SciScore for 10.1101/2020.05.27.20114272: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Several limitations of our study need to be addressed. First, our method did not provide estimates of effect sizes for the different measures, contrarily to what is done in previous papers1,4, and therefore our results may seem more exploratory. We explicitly made this choice, since interventions were often taken simultaneously and there was no information about the delay on the effect of various measures. All measures try to directly lower the ECR, but the success highly depends on the compliance of the citizens. This was supported by the Google data, showing that reductions in mobility do not align directly with implemented measures. A second limitation of our approach is the implemented restriction, imposing non-increasing ECRs. This choice was motivated to avoid additional oscillations in the parameter estimate due to the large variability present in the data (shown by the observations outside the prediction intervals in Figure 4), possibly a result of delays in testing and reporting. Thirdly, our analysis was based on a few assumptions (although supported by other research), like the choice of distributions for the incubation and infectious periods. The influence of our modelling assumptions was investigated in the sensitivity analysis (Appendix C) and showed that variation in the shape of ECR profile was limited for all countries and did not shift the change points. Lastly, we assumed that the fraction of tested infectious individuals ρ was unknown but constant, while i...
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-