Rapid implementation of mobile technology for real-time epidemiology of COVID-19
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The rapidity with which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads through a population is defying attempts at tracking it, and quantitative polymerase chain reaction testing so far has been too slow for real-time epidemiology. Taking advantage of existing longitudinal health care and research patient cohorts, Drew et al. pushed software updates to participants to encourage reporting of potential coronavirus disease 2019 (COVID-19) symptoms. The authors recruited about 2 million users (including health care workers) to the COVID Symptom Study (previously known as the COVID Symptom Tracker) from across the United Kingdom and the United States. The prevalence of combinations of symptoms (three or more), including fatigue and cough, followed by diarrhea, fever, and/or anosmia, was predictive of a positive test verification for SARS-CoV-2. As exemplified by data from Wales, United Kingdom, mathematical modeling predicted geographical hotspots of incidence 5 to 7 days in advance of official public health reports.
Science , this issue p. 1362
Article activity feed
-
-
SciScore for 10.1101/2020.04.02.20051334: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: We found the following clinical trial numbers in your paper:
Identifier Status Title NCT04331509 Recruiting COVID-19 Symptom … SciScore for 10.1101/2020.04.02.20051334: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: We found the following clinical trial numbers in your paper:
Identifier Status Title NCT04331509 Recruiting COVID-19 Symptom Tracker Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-