Architectural RNA is required for heterochromatin organization

This article has been Reviewed by the following groups

Read the full article

Abstract

In addition to its known roles in protein synthesis and enzyme catalysis, RNA has been proposed to stabilize higher-order chromatin structure. To distinguish presumed architectural roles of RNA from other functions, we applied a ribonuclease digestion strategy to our CUT&RUN in situ chromatin profiling method (CUT&RUN.RNase). We find that depletion of RNA compromises association of the murine nucleolar protein Nucleophosmin with pericentric heterochromatin and alters the chromatin environment of CCCTC-binding factor (CTCF) bound regions. Strikingly, we find that RNA maintains the integrity of both constitutive (H3K9me3 marked) and facultative (H3K27me3 marked) heterochromatic regions as compact domains, but only moderately stabilizes euchromatin. To establish the specificity of heterochromatin stabilization by RNA, we performed CUT&RUN on cells deleted for the Firre long non-coding RNA and observed disruption of H3K27me3 domains on several chromosomes. We conclude that RNA maintains local and global chromatin organization by acting as a structural scaffold for heterochromatic domains.

Article activity feed