Aging is associated with a systemic length-associated transcriptome imbalance
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (preLights)
Abstract
Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans. We present three lines of evidence supporting the biological importance of the uncovered transcriptome imbalance. First, in vertebrates the length association primarily displays a lower relative abundance of long transcripts in aging. Second, eight antiaging interventions of the Interventions Testing Program of the National Institute on Aging can counter this length association. Third, we find that in humans and mice the genes with the longest transcripts enrich for genes reported to extend lifespan, whereas those with the shortest transcripts enrich for genes reported to shorten lifespan. Our study opens fundamental questions on aging and the organization of transcriptomes.
Article activity feed
-
-
Excerpt
Machine learning predicts markers of ageing: A systems biology approach points to an imbalance in RNA transcript length as the best single factor implicated in ageing, more significant than any gene alteration alone.
-