Liver-Chip: Reproducing Human and Cross-Species Toxicities

This article has been Reviewed by the following groups

Read the full article

Abstract

Nonclinical rodent and non-rodent toxicity models used to support clinical trials of candidate drugs may produce discordant results or fail to predict complications in humans contributing to drug failures in the clinic. Here we applied microengineered Organ-on-Chip (Organ-Chip) technology to design rat, dog, and human Liver-Chips containing species-specific primary hepatocytes interfaced with liver sinusoidal endothelial cells, with or without Kupffer cells and hepatic stellate cells, cultured under physiological fluid flow. The Liver-Chips detected diverse phenotypes of liver toxicity including hepatocellular injury, steatosis, cholestasis, and fibrosis as well as species-specific toxicities when treated with tool compounds. Multi-species Liver-Chips may provide a useful platform for prediction of liver toxicity and inform human relevance of liver toxicities detected in animal studies to better determine safety and human risk.

One Sentence Summary

Microengineered Organ-Chip technology has been used to design rat, dog and human Liver-Chips that recapitulate species-specific liver toxicities.

Article activity feed