From Atoms to Neuronal Spikes: A Multi-Scale Simulation Framework

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Understanding how molecular events in ion channels impact neuronal excitability, as derived from the calculation of the time course of the membrane potentials, can help elucidate the mechanisms of neurological disease-linked mutations and support neuroactive drug design. Here, we propose a multi-scale simulation approach which couples molecular simulations with neuronal simulations to predict the variations in membrane potential and neural spikes. We illustrate this through two examples. First, molecular dynamics simulations predict changes in current and conductance through the AMPAR neuroreceptor when transitioning from the wild-type protein to certain disease-associated variants. The results of these simulations inform morphologically detailed models of cortical pyramidal neurons, which are simulated using the Arbor framework to determine neural spike activity. Based on these multiscale simulations, we suggest that disease associated AMPAR variants may significantly impact neuronal excitability. In the second example, the Arbor model is coupled with coarse-grained Monte Carlo gating simulations of voltage-gated (K + and Na + ) channels. The pre-dicted current from these ion channels altered the membrane potential and, in turn, the excitation state of the neuron was updated in Arbor. The resulting membrane potential was then fed back into the Monte Carlo simulations of the voltage-gated ion channels, resulting in a bidirectional coupling of current and membrane potential. This allowed the transitions of the states of the ion channels to influence the membrane potentials and vice versa. Our simulations also included the crucial — so far unexplored — effects of the composition of the lipid membrane embedding the ion channels on the membrane potential and revealed a significant impact of temperature on the neuronal excitability. Our combined approaches predicted membrane potentials consistent with electrophysiological recordings and established a multi-scale framework linking the atomistic perturbations to neuronal excitability.

Article activity feed