Distinct dopaminergic spike-timing-dependent plasticity rules are suited to different functional roles
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Various mathematical models have been formulated to describe the changes in synaptic strengths resulting from spike-timing-dependent plasticity (STDP). A subset of these models include a third factor, dopamine, which interacts with spike timing to contribute to plasticity at specific synapses, notably those from cortex to striatum at the input layer of the basal ganglia. Theoretical work to analyze these plasticity models has largely focused on abstract issues, such as the conditions under which they may promote synchronization and the weight distributions induced by inputs with simple correlation structures, rather than on scenarios associated with specific tasks, and has generally not considered dopamine-dependent forms of STDP. In this paper we introduce forms of dopamine-modulated STDP adapted from previously proposed plasticity rules. We then analyze, mathematically and with simulations, their performance in two biologically relevant scenarios. We test the ability of each of the three models to complete simple value estimation and action selection tasks, studying the learned weight distributions and corresponding task performance in each setting. Interestingly, we find that each plasticity rule is well suited to a subset of the scenarios studied but falls short in others. Different tasks may therefore require different forms of synaptic plasticity, yielding the prediction that the precise form of the STDP mechanism present may vary across regions of the striatum, and other brain areas impacted by dopamine, that are involved in distinct computational functions.